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Abstract. The recently proposed supersymmetric extensions of reduced Kadomtsev-Petviashvili (KP) inte-
grable hierarchies in N = 1, 2 superspace are shown to contain in the purely bosonic limit new types of or-
dinary non-supersymmetric integrable systems. The latter are coupled systems of several multi-component
non-linear Schrödinger-like hierarchies whose basic nonlinear evolution equations contain additional quintic
and higher-derivative nonlinear terms. Also, we obtain the N = 2 supersymmetric extension of Toda chain
model as Darboux-Bäcklund orbit of the simplest reduced N = 2 super-KP hierarchy and find its explicit
solution.

PACS. 11.30.Pb Supersymmetry – 05.45.Yv Solitons nonlinear dynamics – 02.30.Ik Integrable systems

1 Introduction

The notion of integrable systems arises in different dis-
guises in a vast array of actively developing topics of theo-
retical physics. The last decade has witnessed a dramatic
increase in the interest towards integrable hierarchies of
nonlinear evolution (“soliton” or “soliton-like”) equations,
especially towards their supersymmetric extensions, which
is primarily due to the role they are playing in mod-
ern superstring theory. In theoretical physics supersymme-
try is a fundamental symmetry principle unifying bosonic
and fermionic degrees of freedom of infinite-dimensional
dynamical (field-theoretic) systems which underly super-
string theory as an ultimate candidate for an unified the-
ory of all fundamental forces in Nature, including quantum
gravity. In particular, supersymmetric generalizations of
Kadomtsev-Petviashvili (super-KP) integrable hierarchy
have been found to be of direct relevance for random ma-
trix models of non-perturbative superstring theory [1]. Su-
persymmetric integrable systems attract a lot of interest
also from purely mathematical point of view, in particular,
the supersymmetric generalizations of the inverse scatter-
ing method, bi-Hamiltonian structures, tau-functions and
Sato Grassmannian approach, and the Drinfeld-Sokolov
algebraic scheme.

The purpose of the present contribution is to study in
some detail the properties of the recently proposed classes
SKPN=1

(MB ,MF ) and SKPN=2
(MB ,MF ) of reduced super-KP inte-

grable hierarchies [2–5] (see Eqs. (3, 5) and Eqs. (13–3)
a e-mail: nissimov@inrne.bas.bg
b e-mail: svetlana@inrne.bas.bg

below). We will show that the latter contain in the purely
bosonic limit new types of ordinary non-supersymmetric
integrable systems. Furthermore, we will show that the
supersymmetric extension of Toda chain in N = 2 super-
space naturally arises as Darboux-Bäcklund orbit of the
simplest member of SKPN=2

(MB ,MF ) class similarly to the
simpler N = 1 super-KP case [2]. Thus, one can expect
that the super-tau functions of the simplest members of
SKPN=1

(MB ,MF ) and SKPN=2
(MB ,MF ) integrable hierarchies will

play, under certain additional constraints on them, the
role of partition functions in random matrix models of
superstrings similarly to the case of random matrix mod-
els of ordinary non-supersymmetric strings (for a review,
see [6]).

2 Sato formulation of super-KP Hierarchies

We shall use throughout the supersymmetric extension
of Sato pseudo-differential operator formalism in N = 2
superspace [3,5] with coordinates (x, θ+, θ−), where θ± are
anticommuting, and with the following standard notations
for the ordinary (bosonic) derivative ∂ ≡ ∂

∂x and the two
super-covariant fermionic derivative D± operators:

D± =
∂

∂θ±
+ θ±

∂

∂x
, D2

± = ∂ , {D+, D−} = 0.

(1)



198 The European Physical Journal B

Any N = 2 super-pseudo-differential operator A has the
general form A = A+ + A− with:

A± ≡
∑
j≥0

(
a
(0)
±j + a

(+)
±j D+ + a

(−)
±j D− + a

(1)
±jD+D−

)
∂±j

(2)

where the coefficients are N = 2 superfields, i.e. functions
of (x, θ+, θ−) and, possibly, of additional (time-evolution)
parameters. The subscripts (±) denote the purely dif-
ferential or purely pseudo-differential parts of A, respec-
tively. The rules of conjugation within the super-pseudo-
differential formalism are: (AB)∗ = (−1)|A| |B|B∗A∗ for
any two elements with Grassmann parities |A| and |B|;(
∂k
)∗ = (−1)k∂k ,

(Dk±
)∗ = (−1)k(k+1)/2Dk± and u∗ = u

for any coefficient superfield. Furthermore, in order to
avoid confusion we shall also employ the following nota-
tions: for any super-(pseudo-)differential operator A and
a superfield function f , the symbol A(f) or (Af) will in-
dicate application (action) of A on f , whereas the symbol
Af without brackets will denote simply operator product
of A with the zero-order (multiplication) operator f .

In reference [5] (see also [3]) a general class
SKPN=2

(MB ,MF ) of reduced N = 2 super-KP integrable hi-
erarchies has been proposed, described by the following
fermionic N = 2 super-pseudo-differential Lax operators:

L = D− +
MB∑
a=1

ΦaD−1
+ Ψa +

MF∑
α=1

FαD−1
+ Gα

≡ D− +
M∑
i=1

ΦiD−1
+ Ψi , M ≡ MB + MF . (3)

Here
{
Φa, Ψa

}
are bosonic, whereas

{Fα,Gα

}
are fermionic coefficient superfields. In what
follows we will often use the short-hand no-
tations

{
Φi

}M

i=1
≡

({
Φa

}MB

a=1
,
{Fα

}MF

α=1

)
and{

Ψi

}M

i=1
≡

({
Ψa

}MB

a=1
,
{Gα

}MF

α=1

)
. Also we will need

the explicit expressions of
(LK

)
− for arbitrary odd

integer power K of L [2,3,5]:

(L2k+1
)
− =

M∑
i=1

2k∑
s=0

(−1)s|i|L2k−s(Φi)D−1
+ (Ls)∗ (Ψi)

+
M∑
i=1

2k−1∑
s=0

(−1)s|i|+s+|i|L2k−1−s(Φi)D−1
+ D− (Ls)∗ (Ψi)

(4)

and similarly for even powers K = 2k. The N = 2
super-Lax operator (3) can be alternatively represented
as L = WD−W−1, in terms of the N = 2 Sato super-
dressing operator W = 1 +

∑
j≥1 wj/2D−j

+ whose coeffi-
cients superfields wj/2 are recursively expressed through
the finite number of the super-Lax coefficient super-
fields

{
Φi, Ψi

}M

i=1
.

The SKPN=2
(MB ,MF ) integrable hierarchies are given by

the infinite sets of bosonic isospectral (w.r.t. ∂
∂tl

-flows with

l = 1, 2, . . . ) and fermionic isospectral (w.r.t. D±
n -flows

with N = 1, 2, . . . ) Sato evolution equations with L as
in (3):

∂

∂tl
L =

[ (L2l
)
+

, L
]

, D+
n L =

{(
Λ2n−1

)
+

, L
}

D−
n L = −

{(L2n−1
)
− − X2n−1, L

}
(5)

where Λ ≡ WD+W−1 and where (cf. Eq. (4)):(L2n−1
)
− − X2n−1 ≡

M∑
i=1

2n−2∑
s=0

(−1)s(|i|+1)L2n−2−s(Φi)D−1
+ (Ls)∗ (Ψi). (6)

The fermionic isospectral flows D±
n in equations (5) pos-

sess natural realization in terms of two infinite sets of an-
ticommuting “evolution” parameters {ρ±n }∞n=1 and span
N = 2 supersymmetry algebra:

D±
n =

∂

∂ρ±n
−

∞∑
k=1

ρ±k
∂

∂tn+k−1{
D±

n , D±
m

}
= −2

∂

∂tn+m−1
,
{
D±

n , D∓
m

}
= 0 (7)

the rest of flow commutators being zero.
Accordingly, the superfields Φi and Ψi entering the

pseudo-differential art of L (3) obey the following infinite
set of bosonic and fermionic nonlinear evolution equations:

∂

∂tl
Φi =

(L2l
)
+

(Φi) ,
∂

∂tl
Ψi = − (L2l

)∗
+

(Ψi) (8)

D−
n Φi =

(L2n−1
+ + X2n−1

)
(Φi) − 2L2n−1(Φi) (9)

D−
n Ψi = −

((L2n−1
)∗
+

+ X∗
2n−1

)
(Ψi) + 2

(L2n−1
)∗

(Φi)

(10)

D+
n Φi =

(
Λ2n−1

)
+

(Φi) , D+
n Ψi = − (Λ2n−1

)∗
+

(Ψi).
(11)

Henceforth, all superfield functions pertinent to the in-
tegrable SKPN=2

(MB ,MF ) hierarchies depend on (x, θ±; t, ρ±)
where the collective notations t ≡ (t2, t3, . . . ) and ρ± ≡
(ρ±1 , ρ±2 , . . . ) are employed.

All solutions of SKPN=2
(MB ,MF ) hierarchies (8–11) are

expressed through a single N = 2 super-tau function
τ = τ(x, θ±; t, ρ±). The latter is related to the coeffi-
cients of the pertinent N = 2 super-Lax operator L =
WD−W−1 (3) and its associate Λ = WD+W−1 as fol-
lows [5]:

(L2k
)
(−1)

=
∂

∂tk
D+ ln τ ,

(
Λ2n−1

)
(−1)

= D+
n D+ ln τ(L2n−1 − X2n−1

)
(−1)

= D−
n D+ ln τ (12)

where the subscript (−1) indicates taking the coefficient in
front of D−1

+ in the expansion of the corresponding super-
pseudo-differential operator.
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3 New ordinary integrable hierarchies
as bosonic limits of super-KP hierarchies

Let us first consider the simpler case of reduced super-KP
integrable hierarchies SKPN=1

(MB ,MF ) [2] in N = 1 super-
space (x, θ) defined by super-Lax operators:

L = D + F0 +
MB∑
a=1

ΦaD−1Ψa +
MF∑
α=1

FaD−1Ga (13)

DF0 = 2

(∑
α

FαGα −
∑

a

ΦaΨa

)
(14)

∂

∂tl
L =

[ (L2l
)
+

, L
]

DnL = −
{(L2n−1

)
− − X2n−1, L

}
· (15)

Here D = ∂/∂θ+θ∂/∂x is the single N = 1 super-covariant
derivative; the single set of fermionic isospectral flows Dn

are of the same form as their N = 2 counterparts (7) by
identifying ρ±n = ρn, and similarly for

(L2n−1
)
− − X2n−1

by replacing D+ with D in the corresponding N = 2
counterpart (6). The super-Lax (13) coefficient N = 1
superfields

{
Φa, Ψa

}
and

{Fα, Gα

}
are bosonic and

fermionic, respectively, as in (3). The superspace compo-
nent expansion of the latter reads:

Φa(x, θ) = ua(x) + θfa(x) , Ψa(x, θ) = ūa(x) + θf̄a(x)

(16)

Fα(x, θ) = gα(x) + θvα(x) , Gα(x, θ) = ḡα(x) + θv̄α(x)
(17)

where
{
ua, ūa, vα, v̄α

}
are ordinary bosonic fields while{

fa, f̄a, gα, ḡα

}
are ordinary fermionic (anti-commuting)

fields. In equations (16–17) we have skipped the depen-
dence on the “time”-evolution parameters of the underly-
ing integrable hierarchy (3).

Let us now consider the lowest nontrivial evolution
equations of the N = 1 super-KP system (13–3) (cf.
Eqs. (8)):

∂

∂t2
Φa =

(L4
)
+

(Φa) ,
∂

∂t2
Ψa = − (L4

)∗
+

(Ψa) (18)

∂

∂t2
Fα =

(L4
)
+

(Fα) ,
∂

∂t2
Gα = − (L4

)∗
+

(Gα) (19)

and let us insert above the superspace component ex-
pansions (16–17). In the bosonic limit, i.e., when all

anti-commuting component fieds are set to zero, equa-
tions (18–19) reduce to the following system of nonlin-
ear evolution equations for the bosonic component fields{
ua, ūa

}MB

a=1
and

{
vα, v̄α

}MF

α=1
:

∂

∂t2
ua = ∂2ua + 2Q(u, ū, v, v̄)ua

∂

∂t2
ūa = −∂2ūa − 2Q̄(u, ū, v, v̄)ūa (20)

∂

∂t2
vα = ∂2vα + 2Q̄(u, ū, v, v̄)vα

∂

∂t2
v̄α = −∂2v̄α − 2Q(u, ū, v, v̄)v̄α (21)

where:

Q(u, ū, v, v̄) ≡
MF∑
β=1

vβ v̄β −
MB∑
b=1

ub(∂ūb)−
(

MB∑
b=1

ubūb

)2

(22)

Q̄(u, ū, v, v̄) ≡
MF∑
β=1

vβ v̄β +
MB∑
b=1

(∂ub)ūb−
(

MB∑
b=1

ubūb

)2

·

(23)

From equations (20–23) we conclude that N = 1 super-KP
hierarchies (13–3) contain in the purely bosonic limit new
types of ordinary (non-supersymmetric) integrable hierar-
chies. The latter are systems of MF -component nonlinear
Schrödinger hierarchies, given by the fields

{
vα, v̄α

}
, cou-

pled to MB-component derivative nonlinear Schrödinger
hierarchies given by the fields

{
ua, ūa

}
in the Gerdjikov-

Ivanov [7] form.
We can now straightforwardly generalize the above dis-

cussion to the N = 2 super-KP case. The lowest nontriv-
ial evolution equations for the SKPN=2

(MB ,MF ) hierarchy (5)
have the same form as (18–19) where now L is given by (3),
whereas the N = 2 superspace component expansions for
the pertinent superfields now read (cf. (16–17)):

Φa(x, θ+, θ−) = ua(x) +
∑
±

θ±f (±)
a (x) + θ+θ−wa(x)

Ψa(x, θ+, θ−) = ūa(x) +
∑
±

θ±f̄ (±)
a (x) + θ+θ−w̄a(x)

(24)

Fα(x, θ+, θ−) = fα(x) +
∑
±

θ±v(±)
α (x) + θ+θ−gα(x)

Gα(x, θ+, θ−) = f̄α(x) +
∑
±

θ±v̄(±)
α (x) + θ+θ−ḡα(x)

(25)

where we have suppressed the “time”-evolution depen-

dence for brevity. Here
{(−)

ua ,
(−)
wa,

(−)
v (±)

α

}
are ordinary boso-

nic fields whereas
{(−)

fα ,
(−)
gα ,

(−)

f
(±)
a

}
are ordinary fermionic
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(anti-commuting) fields. Inserting the superspace expan-
sions (24–25) in equations (18–19) with L given by (3) we
obtain:

∂

∂t2
ua = ∂2ua + 2Q

(
(−)
u ,

(−)
w ,

(−)
v

)
ua

∂

∂t2
ūa = −∂2ūa − 2Q̄

(
(−)
u ,

(−)
w ,

(−)
v

)
ūa (26)

∂

∂t2
wα = ∂2wα + 2Q̄

(
(−)
u ,

(−)
w ,

(−)
v

)
wα

−2

(
∂

(∑
b

ubūb

))
∂ua

∂

∂t2
w̄α = −∂2w̄α − 2Q

(
(−)
u ,

(−)
w ,

(−)
v

)
w̄α

−2

(
∂

(∑
b

ubūb

))
∂ūa (27)

∂

∂t2
v(+)

α = ∂2v(+)
α + 2Q̄

(
(−)
u ,

(−)
w ,

(−)
v

)
v(+)

α

∂

∂t2
v̄(+)

α = −∂2v̄(+)
α − 2Q

(
(−)
u ,

(−)
w ,

(−)
v

)
v̄(+)

α (28)

∂

∂t2
v(−)

α = ∂2v(−)
α + 2Q

(
(−)
u ,

(−)
w ,

(−)
v

)
v(−)

α

+2

(
∂

(∑
b

ubūb

))
v(+)

α

∂

∂t2
v̄(−)

α = −∂2v̄(−)
α − 2Q̄

(
(−)
u ,

(−)
w ,

(−)
v

)
v̄(−)

α

+2

(
∂

(∑
b

ubūb

))
v̄(+)

α (29)

where:

Q

(
(−)
u ,

(−)
w ,

(−)
v

)
≡

MF∑
β=1

v
(−)
β v̄

(+)
β +

MB∑
b=1

ubw̄b+

(
MB∑
b=1

ubūb

)2

(30)

Q̄

(
(−)
u ,

(−)
w ,

(−)
v

)
≡

MF∑
β=1

v
(+)
β v̄

(−)
β −

MB∑
b=1

wbūb+

(
MB∑
b=1

ubūb

)2

.

(31)

Equations (26–31) bring us to the conclusion that N = 2
super-KP hierarchies (3, 5) contain in the purely bosonic
limit new types of ordinary non-supersymmetric inte-
grable hierarchies. The latter are coupled systems of sev-
eral multi-component non-linear Schrödinger-type hierar-
chies whose basic nonlinear evolution equations (26–31)
contain additional (besides the usual cubic terms) quintic
and higher-derivative nonlinear terms.

Finally, let us note that N = 1, 2 super-KP hierar-
chies possess a vast set of additional non-isospectral sym-
metries which span infinite-dimensional non-Abelian su-
perloop superalgebras [4,5].

4 N = 2 super-Toda chain

Darboux-Bäcklund (DB) transformations for N = 1, 2
super-KP hierarchies have been worked out in detail in ref-
erences [2,4,5,8], where we have derived the explicit form
of the general DB (“super-soliton”-like) solutions. The lat-
ter are given in terms of Berezinians (super-deteminants)
whose bosonic and fermionic blocks have a special gener-
alized Wronskian-like structure.

Here we will discuss in some detail the DB orbit, i.e.,
the sequence of successive iterations of DB transforma-
tions for the simplest N = 2 super-KP hierarchy SKPN=2

(1,0)

with super-Lax operator L = D− + ΦD−1
+ Ψ :

Ψ (n+1) =
1

Φ(n)
, Φ(n+1) = −Φ(n)D+

(L(n)(Φ(n))
Φ(n)

)

= −Φ(n)D+D− ln Φ(n) −
(
Φ(n)

)2

Ψ (n) (32)

where the subscripts in brackets indicate the number of
iteration steps of DB transformations. Formulas (32) are
simple special case of the general expressions for successive
DB transformations [2,8,4,5]. Introducing new N = 2 su-
perfields ϕn through the substitution Φ(n) = eϕn , we can
rewrite equations (32) in the following form:

D−D+ϕn = eϕn+1−ϕn + eϕn−ϕn−1 (33)

which is the N = 2 supersymmetric extension of the
equations of the ordinary Toda chain model (for the
N = 1 super-Toda chain see [2]; for alternative repre-
sentations of N = 2 super-Toda chain see [9]). Indeed,
inserting in (33) the superspace component expansion
ϕn(x, θ+, θ−) = un(x) +

∑
± θ±f

(±)
n + θ+θ−wn(x), we ob-

tain in the bosonic limit (f (±)
n = 0) the following equations

for un(x):

−∂2un = eun+2−un − eun−un−2 (34)

which are precisely the ordinary Toda-chain equations for
double Toda lattice spacing.

Using the general Berezinian expressions for the super-
tau functions of N = 2 super-KP hierarchies [5] we obtain
the following explicit solution for the N = 2 super-Toda
chain model (33): ϕn = ln τ (n+1)+ln τ (n) where the super-
tau functions are given by

(
τ (2m)

)−1

=Ber

(
Wm,m(Φ0) Wm,m(D−Φ0)

Wm,m(D+Φ0) Wm,m(D+D−Φ0)

)

(35)

τ (2m+1) =Ber

(
Wm+1,m+1(Φ0) Wm,m+1(D−Φ0)

Wm+1,m(D+Φ0) Wm,m(D+D−Φ0)

)
·

(36)
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In equations (35–36) the following notations are used.
Wk,m(F ) is k × m rectangular matrix block of the
form Wk,m(F ) =

∥∥∂i+j−2F
∥∥j=1,... ,k

i=1,... ,m
for any superfield

F (x, θ±). Φ0 is explicitly given by N = 2 superspace
Fourier integral:

Φ0(x, θ±) =
∫

dλdη± φ0(λ, η±) exp
{
λx +

∑
±

η±θ±
}
(37)

with an arbitrary N = 2 superspace “density” φ0(λ, η±) =
φ

(1)
B (λ) + η+φ

(1)
F (λ) + η−

(
φ

(2)
F (λ) + η+φ

(2)
B (λ)

)
where η±

are anti-commuting “Fourier momenta”.
It is a very interesting topic for further research to

study in more details the properties and possible physical
significance of the very broad class of DB (“super-soliton”-
like) solutions of N = 1, 2 super-KP integrable hierarchies.
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